Complexes of Discrete Distributional Differential Forms and Their Homology Theory

نویسنده

  • Martin Werner Licht
چکیده

Complexes of discrete distributional differential forms are introduced into finite element exterior calculus. Thus we generalize a notion of Braess and Schöberl, originally studied for a posteriori error estimation. We construct isomorphisms between the simplicial homology groups of the triangulation, the discrete harmonic forms of the finite element complex, and the harmonic forms of the distributional finite element complexes. As an application, we prove that the complexes of finite element exterior calculus have cohomology groups isomorphic to the de Rham cohomology, including the case of partial boundary conditions. Poincaré-Friedrichs-type inequalities will be studied in a subsequent contribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

Discrete Crystal Elasticity and Discrete Dislocations in Crystals

This article is concerned with the development of a discrete theory of crystal elasticity and dislocations in crystals. The theory is founded upon suitable adaptations to crystal lattices of elements of algebraic topology and differential calculus such as chain complexes and homology groups, differential forms and operators, and a theory of integration of forms. In particular, we define the lat...

متن کامل

Discrete Crystal Plasticity

This article is concerned with the development of a discrete theory of crystal elasticity and dislocations in crystals. The theory is founded upon suitable adaptations to crystal lattices of elements of algebraic topology and differential calculus such as chain complexes and homology groups, differential forms and operators, and a theory of integration of forms. In particular, we define the lat...

متن کامل

Graph Complexes

This is a note from T. Willwacher’s lecture series which was part of masterclass “Algebraic structure of Hochschild complexes” at the University of Copenhagen in October 2015. From the course description: Graph complexes are differential graded vector spaces whose elements are linear combinations of combinatorial graphs. The differential is the operation of contracting an edge. These graph comp...

متن کامل

The distributional Henstock-Kurzweil integral and measure differential equations

In the present paper, measure differential equations involving the distributional Henstock-Kurzweil integral are investigated. Theorems on the existence and structure of the set of solutions are established by using Schauder$^prime s$ fixed point theorem and Vidossich theorem. Two examples of the main results paper are presented. The new results are generalizations of some previous results in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017